- 1. Explain the following statements are true.
 - (a) If G/Z(G) is cyclic, then G is abelian.
 Solution: Let G/Z(G) be generated by g₀Z(G) and g, h ∈ G. Then, g = g₀^mz and h = g₀ⁿw for some natural numbers m, n and z, w ∈ Z(G).
 Now, gh = g₀^mzg₀ⁿw = g₀^{m+n}zw = g₀^{n+m}wz = hg which means G is abelian.
 - (b) Every characteristic subgroup is normal. **Solution:** Let H be a characteristic subgroup and $x \in G$. Consider the inner automorphism Ad_x . As H is characteristic subgroup therefore, $Ad_x(H) \subseteq H$ which implies that H is normal.
 - (c) Every abelian group of order pq where p, q are distinct primes, is cyclic. Solution: Let $g, h \in G$ of order p and q respectively. As G is abelian order of gh is pq which means that G is cyclic.
 - (d) $Inn(S_n)$, the group of inner automorphisms of S_n is isomorphic to S_n for $n \ge 3$.

Solution: For any group G one can show that $Inn(G) \cong G/Z(G)$.

Define a map $\Phi: G \to Inn(G)$ by $\Phi(g) := Ad_g$ for $g \in G$. Clearly, Φ is group homomorphism and injective with kernel Z(G).

Then, using first isomorphism theorem we get that $G/Z(G) \cong Inn(G)$. Now, as $Z(S_n) = id$ for $n \geq 3$ so we are done.

- (e) $Z(S_n) = 1$ for $n \ge 3$. **Solution:** Suppose $\sigma \in S_n$ is not identity then there is some *i* such that $\sigma(i) = j \ne i$. Pick $k \notin \{i, j\}$ and let $\tau = (j, k)$, then, $\tau \sigma \ne \sigma \tau$.
- 2. Let G be a group and N a normal subgroup of G. Show that there exists a bijective correspondence between subgroups of G containing N and subgroups of G/N.

Solution: Let Sub(G, N) be the set of subgroups of G containing N and Sub(G/N) be the set of subgroups of G/N.

Define, a map $\Phi : Sub(G, N) \to Sub(G/N)$ by $\Phi(H) := H/N$. This map is clearly well defined. Let $H_1 \neq H_2 \in Sub(G, N)$ then without loss of generality let $x \in H_1$ but $x \notin H_2$. So, $xN \in H_1N$ but $xN \notin H_2N$ i.e. $H_1N \neq H_2N$ and Φ is one-one. To prove that Φ is onto, let A be a subgroup of G/N and let $S := \{g \in G : gN \in A\}$. Then, $\Phi(S) = a$ which shows that Φ is onto.

3. Let n be a positive integer. Describe the group $Aut(Z_n)$, where Z_n is the cyclic group of order n.

Solution:Let U(n) be the set of all integers which are less than n and prime to n. It forms a group with respect to multiplication modulo n. Generators of Z_n are the elements of U(n).

For a generator $b \in Z_n$ we define a map $\tau_b : Z_n \to Z_n$ by $\tau_b(m) = mb$ for $m \in Z_n$. Then, τ_b becomes an automorphism of Z_n .

Define, $\tau : U(n) \to Aut(Z_n)$ by $\tau(b) := \tau_b$ which is well defined and one one. To prove that τ is onto also, let $\phi \in Aut(Z_n)$ and $g \in Z_n$. Then, $\phi^{-1}(g) = k \implies g = \phi(k) = k\phi(1)$ i.e. $\phi(1)$ is a generator and $\phi = \tau_{\phi(1)}$. Hence, τ is onto.

4. Prove that if G is a finite group, and p is the smallest prime dividing the order of G, then any subgroup of index p is normal.

Solution: Let H be a subgroup of index p. Then the group G acts on the left cosets G/H by left multiplication.

It induces the permutation representation $\rho: G \to S_p$.

Let $K = \ker \rho$ be the kernel of ρ . Since kH = H for $k \in K$, we have $K \subset H$. Let [H:K] = m.

By the first isomorphism theorem, the quotient group G/K is isomorphic to the subgroup of S_p , thus [G:K] divides $|S_p| = p!$ by Lagrange's theorem. Since [G:K] = [G:H][H:K] = pm, we have pm divides p! and hence m divides (p-1)!. If m has a prime factor q, then $q \ge p$ since the minimality of p but the factors of (p-1)! are only prime numbers less than p. This implies that m = 1, hence H = K. Therefore H is normal since a kernel is always

5. (a) Deduce Class Equation.

Solution: Let G be a group and $a \in G$. Conjugacy class cl(a) of a is defined as $cl(a) : \{gag^{-1} : g \in G\}$ and centralizer C(a) of a is defined as $C(a) := \{g \in G : gag^{-1} = a\}$.

Consider the function $T: G/C(a) \to cl(a)$ defined by $T(xC(a)) = xax^{-1}$. A routine calculation shows that T is well defined, is one-to-one, and maps the set of left cosets onto the conjugacy class of a. Thus, the number of conjugates of a is the index of the centralizer of a.

Since the conjugacy classes partition a group, we get the Class equation $|G| = \sum |G : C(a)|$, where the sum runs over one element a from each conjugacy class of G.

(b) Show that a group of order p^n , where p is a prime and $n \ge 1$ has a nontrivial center.

Solution: First observe that $cl(a) = \{a\}$ if and only if $a \in Z(G)$. Thus, we may write the class equation in the form $|G| = |Z(G)| + \sum |G : C(a)|$, where the sum runs over representatives of all conjugacy classes with more than one element (this set may be empty). But |G : C(a)| = |G|/|C(a)|, so each term in $\sum |G : C(a)|$ has the form p^k with $k \ge 1$. Hence, $|G| - \sum |G : C(a)| = |Z(G)|$, where each term on the left is divisible by p. It follows, then, that p also divides |Z(G)|, and hence |Z(G)| > 1.

6. Show that the order of the centralizer $C_{S_n}((12)(34)$ is $(n-4)! \times 8$, for all $n \ge 4$. Determine the elements explicitly.

Solution: Let g := (12)(3,4) then $\sigma g \sigma^{-1} = (\sigma(1)\sigma(2))(\sigma(3)\sigma(4))$ for $\sigma \in S_n$. Now, $\sigma g \sigma^{-1} = g$ implies that $(\sigma(1), \sigma(2))$ can be (12) or, (21) or, (34) or, (43) and also $(\sigma(3)\sigma(4))$ can be (12) or, (21) or, (34) or, (43) but $(\sigma(1), \sigma(2)) \neq (\sigma(3)\sigma(4))$. Hence, there are 8 cases. In each cases (n-4) position of σ can be filled by rest (n-4) numbers in (n-4)! ways. So, there are $(n-4)! \times 8$ number of elements in $C_{S_n}((12)(34)$.